Theoretical properties of bilevel problems are well studied when the lower-level problem is strongly convex. In this work, we focus on bilevel optimization problems without the strong-convexity assumption. In these cases, we first show that the common local optimality measures such as KKT condition or regularization can lead to undesired consequences. Then, we aim to identify the mildest conditions that make bilevel problems tractable. We identify two classes of growth conditions on the lower-level objective that leads to continuity. Under these assumptions, we show that the local optimality of the bilevel problem can be defined via the Goldstein stationarity condition of the hyper-objective. We then propose the Inexact Gradient-Free Method (IGFM) to solve the bilevel problem, using an approximate zeroth order oracle that is of independent interest. Our non-asymptotic analysis demonstrates that the proposed method can find a $(\delta, \varepsilon)$ Goldstein stationary point for bilevel problems with a zeroth order oracle complexity that is polynomial in $d, 1/\delta$ and $1/\varepsilon$.
translated by 谷歌翻译
Image manipulation localization aims at distinguishing forged regions from the whole test image. Although many outstanding prior arts have been proposed for this task, there are still two issues that need to be further studied: 1) how to fuse diverse types of features with forgery clues; 2) how to progressively integrate multistage features for better localization performance. In this paper, we propose a tripartite progressive integration network (TriPINet) for end-to-end image manipulation localization. First, we extract both visual perception information, e.g., RGB input images, and visual imperceptible features, e.g., frequency and noise traces for forensic feature learning. Second, we develop a guided cross-modality dual-attention (gCMDA) module to fuse different types of forged clues. Third, we design a set of progressive integration squeeze-and-excitation (PI-SE) modules to improve localization performance by appropriately incorporating multiscale features in the decoder. Extensive experiments are conducted to compare our method with state-of-the-art image forensics approaches. The proposed TriPINet obtains competitive results on several benchmark datasets.
translated by 谷歌翻译
Vehicle re-identification (Re-ID) is a critical component of the autonomous driving perception system, and research in this area has accelerated in recent years. However, there is yet no perfect solution to the vehicle re-identification issue associated with the car's surround-view camera system. Our analysis identifies two significant issues in the aforementioned scenario: i) It is difficult to identify the same vehicle in many picture frames due to the unique construction of the fisheye camera. ii) The appearance of the same vehicle when seen via the surround vision system's several cameras is rather different. To overcome these issues, we suggest an integrative vehicle Re-ID solution method. On the one hand, we provide a technique for determining the consistency of the tracking box drift with respect to the target. On the other hand, we combine a Re-ID network based on the attention mechanism with spatial limitations to increase performance in situations involving multiple cameras. Finally, our approach combines state-of-the-art accuracy with real-time performance. We will soon make the source code and annotated fisheye dataset available.
translated by 谷歌翻译
In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. Specifically, ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled up from about 20M to 1B parameters by taking advantage of the scalable model capacity and high parallelism of the vision transformer, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose+ model is proposed to deal with heterogeneous body keypoint categories in different types of body pose estimation tasks via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also empirically demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Experimental results show that our ViTPose model outperforms representative methods on the challenging MS COCO Human Keypoint Detection benchmark at both top-down and bottom-up settings. Furthermore, our ViTPose+ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.
translated by 谷歌翻译
In medical image segmentation, it is often necessary to collect opinions from multiple experts to make the final decision. This clinical routine helps to mitigate individual bias. But when data is multiply annotated, standard deep learning models are often not applicable. In this paper, we propose a novel neural network framework, called Multi-Rater Prism (MrPrism) to learn the medical image segmentation from multiple labels. Inspired by the iterative half-quadratic optimization, the proposed MrPrism will combine the multi-rater confidences assignment task and calibrated segmentation task in a recurrent manner. In this recurrent process, MrPrism can learn inter-observer variability taking into account the image semantic properties, and finally converges to a self-calibrated segmentation result reflecting the inter-observer agreement. Specifically, we propose Converging Prism (ConP) and Diverging Prism (DivP) to process the two tasks iteratively. ConP learns calibrated segmentation based on the multi-rater confidence maps estimated by DivP. DivP generates multi-rater confidence maps based on the segmentation masks estimated by ConP. The experimental results show that by recurrently running ConP and DivP, the two tasks can achieve mutual improvement. The final converged segmentation result of MrPrism outperforms state-of-the-art (SOTA) strategies on a wide range of medical image segmentation tasks.
translated by 谷歌翻译
This paper focuses on analyzing and improving the commonsense ability of recent popular vision-language (VL) models. Despite the great success, we observe that existing VL-models still lack commonsense knowledge/reasoning ability (e.g., "Lemons are sour"), which is a vital component towards artificial general intelligence. Through our analysis, we find one important reason is that existing large-scale VL datasets do not contain much commonsense knowledge, which motivates us to improve the commonsense of VL-models from the data perspective. Rather than collecting a new VL training dataset, we propose a more scalable strategy, i.e., "Data Augmentation with kNowledge graph linearization for CommonsensE capability" (DANCE). It can be viewed as one type of data augmentation technique, which can inject commonsense knowledge into existing VL datasets on the fly during training. More specifically, we leverage the commonsense knowledge graph (e.g., ConceptNet) and create variants of text description in VL datasets via bidirectional sub-graph sequentialization. For better commonsense evaluation, we further propose the first retrieval-based commonsense diagnostic benchmark. By conducting extensive experiments on some representative VL-models, we demonstrate that our DANCE technique is able to significantly improve the commonsense ability while maintaining the performance on vanilla retrieval tasks. The code and data are available at https://github.com/pleaseconnectwifi/DANCE
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
With the success of the prompt-tuning paradigm in Natural Language Processing (NLP), various prompt templates have been proposed to further stimulate specific knowledge for serving downstream tasks, e.g., machine translation, text generation, relation extraction, and so on. Existing prompt templates are mainly shared among all training samples with the information of task description. However, training samples are quite diverse. The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space. To exploit the unique task-related information, we imitate the human decision process which aims to find the contrastive attributes between the objective factual and their potential counterfactuals. Thus, we propose the \textbf{C}ounterfactual \textbf{C}ontrastive \textbf{Prompt}-Tuning (CCPrompt) approach for many-class classification, e.g., relation classification, topic classification, and entity typing. Compared with simple classification tasks, these tasks have more complex finite-label spaces and are more rigorous for prompts. First of all, we prune the finite label space to construct fact-counterfactual pairs. Then, we exploit the contrastive attributes by projecting training instances onto every fact-counterfactual pair. We further set up global prototypes corresponding with all contrastive attributes for selecting valid contrastive attributes as additional tokens in the prompt template. Finally, a simple Siamese representation learning is employed to enhance the robustness of the model. We conduct experiments on relation classification, topic classification, and entity typing tasks in both fully supervised setting and few-shot setting. The results indicate that our model outperforms former baselines.
translated by 谷歌翻译
Standard language model training employs gold human documents or human-human interaction data, and treats all training data as positive examples. Growing evidence shows that even with very large amounts of positive training data, issues remain that can be alleviated with relatively small amounts of negative data -- examples of what the model should not do. In this work, we propose a novel procedure to train with such data called the CRINGE loss (ContRastive Iterative Negative GEneration). We show the effectiveness of this approach across three different experiments on the tasks of safe generation, contradiction avoidance, and open-domain dialogue. Our models outperform multiple strong baselines and are conceptually simple, easy to train and implement.
translated by 谷歌翻译
We present a unified formulation and model for three motion and 3D perception tasks: optical flow, rectified stereo matching and unrectified stereo depth estimation from posed images. Unlike previous specialized architectures for each specific task, we formulate all three tasks as a unified dense correspondence matching problem, which can be solved with a single model by directly comparing feature similarities. Such a formulation calls for discriminative feature representations, which we achieve using a Transformer, in particular the cross-attention mechanism. We demonstrate that cross-attention enables integration of knowledge from another image via cross-view interactions, which greatly improves the quality of the extracted features. Our unified model naturally enables cross-task transfer since the model architecture and parameters are shared across tasks. We outperform RAFT with our unified model on the challenging Sintel dataset, and our final model that uses a few additional task-specific refinement steps outperforms or compares favorably to recent state-of-the-art methods on 10 popular flow, stereo and depth datasets, while being simpler and more efficient in terms of model design and inference speed.
translated by 谷歌翻译